

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### RECOVERY OF VALUABLE PERFUMERY COMPOUNDS FROM A GERANIUM STEAM DISTILLATION CONDENSATE USING POLYMERIC ADSORBENTS

Lekhraj P. Amin<sup>a</sup>, Vishwas G. Pangarkar<sup>a</sup>; Anthony A. C. M. Beenackers<sup>b</sup>

<sup>a</sup> Department of Chemical Technology, University of Mumbai, Mumbai, India <sup>b</sup> Department of Chemical Engineering, University of Groningen, Groningen, The Netherlands

Online publication date: 31 December 2001

**To cite this Article** Amin, Lekhraj P. , Pangarkar, Vishwas G. and Beenackers, Anthony A. C. M.(2001) 'RECOVERY OF VALUABLE PERFUMERY COMPOUNDS FROM A GERANIUM STEAM DISTILLATION CONDENSATE USING POLYMERIC ADSORBENTS', *Separation Science and Technology*, 36: 16, 3639 – 3655

**To link to this Article:** DOI: 10.1081/SS-100108353

URL: <http://dx.doi.org/10.1081/SS-100108353>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## RECOVERY OF VALUABLE PERFUMERY COMPOUNDS FROM A GERANIUM STEAM DISTILLATION CONDENSATE USING POLYMERIC ADSORBENTS

Lekhraj P. Amin,<sup>1</sup> Vishwas G. Pangarkar,<sup>1,\*</sup>  
and Anthony A. C. M. Beenackers<sup>2</sup>

<sup>1</sup>Department of Chemical Technology, University of Mumbai, Matunga, Mumbai-400 019, India

<sup>2</sup>Department of Chemical Engineering,  
University of Groningen,  
Nijenborgh 4, 9747 AG Groningen, The Netherlands

### ABSTRACT

Geranium steam-distillation condensate water contains a number of valuable perfumery components. This water was characterized and found to contain geraniol, nerol, citronellol, linalool, isomenthone and menthone. Recovery of these components from the condensate water by adsorption on polymeric adsorbents is described. Single solute and multisolute adsorption equilibria for a variety of polymeric adsorbents are reported. A rational explanation is given for the difference in single solute and multisolute equilibria. A column breakthrough study showed that the components can be readily recovered by adsorption.

*Key Words:* Geranium; Condensate; Water; Polymeric adsorbents; Recovery

---

\*Corresponding author. Fax: +91-22-4145614; E-mail: vgp@udct.ernet.in

## INTRODUCTION

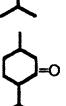
Essential oils obtained from natural sources (flowers, leaves, etc.) are important raw materials for the perfume and flavor industry. The most commonly used processes for essential oil production are steam distillation and solvent extraction (1). During steam distillation, substantial amounts of water-soluble compounds (alcohols, ketones, aldehydes, etc.) present in the essential oil are dissolved in the steam distillation condensate water due to their finite solubilities in water (2–4). The recovery of these compounds becomes very important due to environmental or economic reasons (2,5). Furthermore, the water-soluble compounds are the major aroma-imparting compounds. Thus, if these compounds are recovered and blended with the oil phase, the resulting oil will be similar to the natural oil in its aroma/flavor.

Recovery of these valuable compounds can be completed either by solvent extraction or adsorption. The choice of recovery depends on the concentration of the compounds present in the condensate water. Adsorption is the mostly widely used process for condensates with concentrations less than 2000 ppm due to low solubilities (2).

In recent years, polymeric adsorbents have played a very important role in recovery and removal of dissolved organic compounds from aqueous solution (6–9). Although a great deal of literature exists for activated carbon systems used as adsorbents, the efficiency of polymeric adsorbents, due to their wide range of properties, such as surface area, porosity, and polarity, allows them to replace activated carbon systems for liquid phase adsorption. The adsorption process on polymeric adsorbents is physical, the result of weak van der Waal's forces, which allow the adsorbents to be easily regenerated with a suitable eluant (10). However, regeneration of activated carbon requires more severe conditions than it does for the polymeric adsorbents (11). In addition, at relatively high concentrations, polymeric adsorbents have higher capacities than do the activated carbons (7).

Our study deals with the recovery of dissolved organic (perfumery) compounds from the steam distillation condensate of geranium (*Pelargonium graveolens*) essential oil by adsorption. The adsorption was carried out with polymeric adsorbents (Amberlite XAD-2, Amberlite XAD-4, Amberlite XAD-7, and INDIION 1014 MN-2). The geranium-condensate water was obtained from a steam distillation unit in South India. Geranium oil is produced by the steam distillation of the leaves and stalks of *Pelargonium* species. The oil is an amber to greenish-yellow liquid that has a characteristic rose-like odor, which is highly valued. The Bourbon and North African varieties are the 2 main types of oil. The Bourbon quality is more valuable and thus more expensive. Annual worldwide production of Geranium oil is about 500 tonnes. Geranium oil is the most important natural raw material in the perfumery industry (12). The compounds cited most in the literature about geranium oils (from different cultivars) are citronellol, geraniol, linalool,




phenyl ethyl alcohol, rhodinol, eugenol, and isomenthone (1). Our work involved the characterization of the geranium- condensate water and equilibrium adsorption studies for single and multisolute systems. Column breakthrough data were obtained with 1 polymeric adsorbent due to a limited supply of the condensate water.

## EXPERIMENTAL

### Materials

The aqueous solutions for the single-solute adsorption studies were prepared with pure solute samples. The physical properties of the solutes are given in Table 1. All the aqueous solutions were prepared in distilled water. The polymeric adsorbents, Amberlite XAD-2, Amberlite XAD-4, and Amberlite XAD-7 were supplied by the Rohm and Haas Co (France), while INDION 1014 MN-2 was sup-

**Table 1.** Properties of Solutes

| Solute      | Structural Formula                                                                  | Molecular Formula                 | Density (g/cm <sup>3</sup> ) (25°C) | Boiling Point (°C) | Aroma Profile                                                      |
|-------------|-------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|--------------------|--------------------------------------------------------------------|
| Geraniol    |  | C <sub>10</sub> H <sub>18</sub> O | 0.89                                | 230                | Mild and sweet, floral rose-type odor.                             |
| Nerol       |  | C <sub>10</sub> H <sub>18</sub> O | 0.88                                | 227                | Sweet rosy, refreshing and wet seashore odor of moderate tenacity. |
| Citronellol |  | C <sub>10</sub> H <sub>20</sub> O | 0.86                                | 225                | Fresh rosy odor, variable according to purity.                     |
| Linalool    |  | C <sub>10</sub> H <sub>18</sub> O | 0.86                                | 198                | Light and refreshing, floral woody odor with a faint citrus note.  |
| Isomenthone |  | C <sub>10</sub> H <sub>18</sub> O | 0.9                                 | 208                | Powerful, refreshing and clean minty odor of moderate tenacity.    |
| Menthone    |  | C <sub>10</sub> H <sub>18</sub> O | 0.9                                 | 204                | Minty, refreshing and diffusive odor.                              |

Data from (17).



**Table 2.** Properties of Adsorbents

| Adsorbent        | Total Area (m <sup>2</sup> /g) | Pore Volume (cm <sup>3</sup> /g) | Particle Size (mm) | Density (g/cm <sup>3</sup> ) | Polarity     | Polymer Matrix             |
|------------------|--------------------------------|----------------------------------|--------------------|------------------------------|--------------|----------------------------|
| Amberlite XAD-2  | 300 <sup>a</sup>               | 0.69                             | 0.4                | 1.02                         | Nonpolar     | Polystyrene-divinylbenzene |
| Amberlite XAD-4  | 750 <sup>a</sup>               | 0.99                             | 0.5–0.7            | 1.03–1.04                    | Nonpolar     | Polystyrene-divinylbenzene |
| Amberlite XAD-7  | 450 <sup>a</sup>               | 1.08                             | 0.45–0.6           | 1.06–1.08                    | Intermediate | Acrylic ester              |
| INDION 1014 MN-2 | 1000 <sup>b</sup>              | 1.08                             | 0.3–1.2            | 1.04                         | Nonpolar     | Polystyrene-divinylbenzene |

<sup>a</sup> Data from (18).

<sup>b</sup> Data from (19).

plied by Ion Exchange Ltd (India). The physical properties of the adsorbents are given in Table 2. The geranium condensate water was supplied by a steam distillation unit in South India. Acetone (Extra Pure) was supplied by S. D. Fine Chem. Ltd, which was used for washing the adsorbent. The ethanol used for regeneration of loaded adsorbent was freshly distilled.

### Adsorbent Preparation

Each adsorbent was first washed with 10 bed volumes of acetone and then dried at 60°C at 135 Pa absolute pressure. This process removes any kind of impurities present in the adsorbent. The vacuum-dried adsorbents were kept in sealed flasks to prevent ingress of moisture.

### Equilibrium Adsorption Studies

Aqueous solutions of 1000 ppm concentration of all the solutes were prepared with distilled water. As the maximum solubilities of the solutes were 1000 ppm, higher concentration solutions could not be prepared. These solutions were used for single solute adsorption studies. Adsorbents (0.05 g, 0.1 g, 0.2 g, and 0.4 g) were added to 50 mL aqueous solutions in conical flasks. These flasks were sealed and kept 25°C until equilibrium was attained. The aqueous solutions were then analyzed for their equilibrium concentrations.

The multisolute equilibrium adsorption studies were conducted through the same procedure as that for single solute adsorption. The geranium steam-distillation condensate water was used in the mixture.



### Column Exhaustion Studies

A glass column, 1500 mm long and 14 mm i.d., was used for the exhaustion runs. The column was packed up to 70 mm with a slurry of the adsorbent with water. Acetone, followed by distilled water, was passed through the column. The geranium condensate water was then passed in down-flow mode through the column. The flow rate for the breakthrough runs was adjusted to 10 mL/min with a Millipore peristaltic pump. Samples were collected periodically and analyzed. The flow rate was adjusted to 2 mL/min for regeneration runs with an ethanol eluent. Samples were collected and analyzed.

## ANALYSIS

### Gas Chromatography

The analysis of all the samples was done through gas chromatography (GC) with a Chemito 8510 model GC. The glass GC column was 2 m long and 3 mm i.d., and it was packed with Carbowax 20M supported on 80/100 mesh Chromosorb T. The injector and detector were each kept at 235°C. The oven temperature was adjusted to 125°C and the nitrogen flow rate was 50 mL/min. Three microliters of sample injected into the GC.

### Gas Chromatography–Mass Spectroscopy

The details of the gas chromatography–mass spectroscopy (GC-MS) study are as follows:

Gas chromatograph: Hewlett-Packard HP-5890 Series II Plus  
 Mass selective detector: Hewlett-Packard MSD 5972  
 Capillary column: Alltech AT-1000, length = 60 m, i.d. = 0.25 mm  
 Injector temperature: 250°C  
 Oven Programming: Initial Temperature = 40°C; rate = 4°C/min; oven temperature = 210°C; and  
 and oven time = 15 minutes  
 Carrier gas: Helium  
 Carrier gas flow rate: 0.5 mL/min  
 Split ratio: 1:250

The loading capacity,  $c$  (mmol/g) was determined from a solute mass balance equation (5,13). Knowing the initial and final bulk concentrations,

$$c = \frac{(C_o - C_e) \cdot V}{m} \quad (1)$$



where  $C_o$  is the initial concentration of solute (mmol/L);  $C_e$  is the final equilibrium concentration of solute (mmol/L);  $V$  is the volume of the solution (L), and  $m$  is the mass of the adsorbent (g).

The equilibrium adsorption data for single- and multisolute adsorption were fitted to the Freundlich and Langmuir isotherms (14–15). The Freundlich isotherm for single solute adsorption is

$$c = m_F C_e^{1/n} \quad (2)$$

where  $c$  is the loading capacity (mmol/g);  $C_e$  is the final equilibrium concentration of solute (mmol/L); and  $m_F$  and  $n$  are constants. The higher the value of  $m_F$  and  $n$ , the better is the adsorption capacity of the adsorbent.

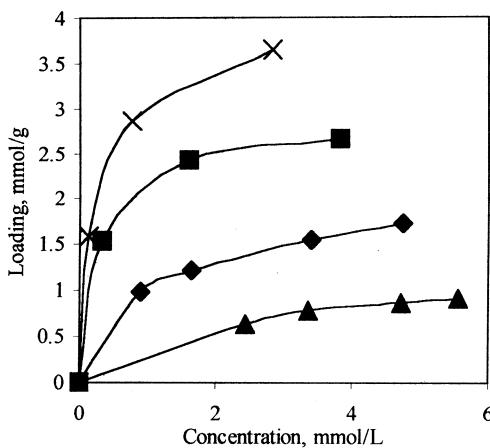
The Langmuir isotherm for single solute adsorption is,

$$\frac{c}{c^*} = \frac{KC_e}{1 + KC_e} \quad (3)$$

where  $c$  is the loading capacity (mmol/g);  $c^*$  is the maximum loading capacity (mmol/g);  $K$  is the adsorption equilibrium constant (l/mmol); and  $C_e$  is the final equilibrium concentration of solute in the liquid phase.

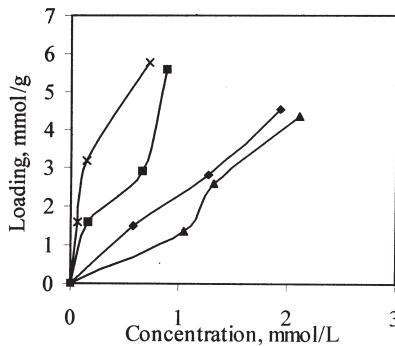
## RESULTS AND DISCUSSIONS

### Characterization of Geranium Condensate Water


The characterization of the geranium condensate water was done through G C. The compounds detected in the geranium condensate water were geraniol (60 ppm), nerol (50 ppm), citronellol (100 ppm), linalool (12 ppm), isomenthone (70 ppm), and menthone (40 ppm). These results were confirmed by GC-MS analysis. However, the analysis of the samples obtained after column elution with ethanol indicated the presence of rose oxide,  $\alpha$ -terpineol and menthol. Apparently these compounds were present in extremely low concentrations (probably below the detection threshold) in the original geranium condensate water. However, once they were concentrated on the adsorbent and eluted, the concentrations were much higher and thus detection was possible. Rose oxide is a highly valuable compound, which can impart a sweet fruity odor at extremely low concentrations.

## EQUILIBRIUM ADSORPTION STUDIES

### Single Solute Adsorption


The sorption isotherms were plotted in the conventional manner of loading an adsorbent based on the concentration of the solute in the aqueous phase. Typi-





**Figure 1.** Single-solute adsorption isotherms (loading versus concentration) for geraniol on polymeric adsorbents at 25°C. ◆ = Amberlite XAD-2; ■ = Amberlite XAD-4; ▲ = Amberlite XAD-7; X = INDION 1014 MN-2.

cal isotherms for 2 solutes, geraniol and isomenthone, are shown in Figs. 1 and 2, respectively. Alcohols and ketones were also present in the aqueous phase. The isotherms shown in the figure are either of Type I or Type II, depending upon the adsorbent (14). Isotherms for Amberlite XAD-7 were of Type I (geraniol) or Type III, indicating that it was unfavorable. This result is due to the relatively polar surface of Amberlite XAD-7. The equilibrium adsorption isotherms for the single-solute adsorption data were fitted based on the Freundlich and Langmuir models



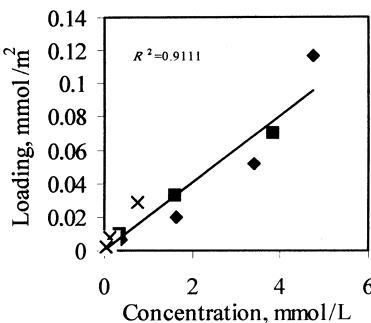
**Figure 2.** Single-solute adsorption isotherms (loading versus concentration) for isomenthone on polymeric adsorbents at 25°C. ◆ = Amberlite XAD-2; ■ = Amberlite XAD-4; ▲ = Amberlite XAD-7; X = INDION 1014 MN-2.



**Table 3.** Parameters for Freundlich Isotherm (Single Solute Adsorption)

| Solute      | Adsorbent |                      |                       |          |                      |                       |          |                      |                       |                  |                      |                       |
|-------------|-----------|----------------------|-----------------------|----------|----------------------|-----------------------|----------|----------------------|-----------------------|------------------|----------------------|-----------------------|
|             | XAD-2     |                      |                       | XAD-4    |                      |                       | XAD-7    |                      |                       | INDION 1014 MN-2 |                      |                       |
|             | <i>n</i>  | <i>m<sub>F</sub></i> | <i>R</i> <sup>2</sup> | <i>n</i> | <i>m<sub>F</sub></i> | <i>R</i> <sup>2</sup> | <i>n</i> | <i>m<sub>F</sub></i> | <i>R</i> <sup>2</sup> | <i>n</i>         | <i>m<sub>F</sub></i> | <i>R</i> <sup>2</sup> |
| Geraniol    | 2.99      | 1.03                 | 0.99                  | 3.20     | 1.94                 | 0.95                  | 2.24     | 0.69                 | 0.97                  | 2.93             | 2.83                 | 0.97                  |
| Nerol       | 1.29      | 1.25                 | 0.95                  | 2.28     | 1.74                 | 0.98                  | 1.47     | 0.47                 | 0.74                  | 4.33             | 2.84                 | 0.93                  |
| Citronellol | 1.47      | 2.82                 | 0.95                  | 1.3      | 3.83                 | 0.99                  | 0.56     | 1.36                 | 0.85                  | 1.95             | 5.9                  | 0.97                  |
| Linalool    | 1.32      | 1.77                 | 0.92                  | 1.83     | 3.12                 | 0.95                  | 0.59     | 1.1                  | 0.96                  | 2.99             | 3.99                 | 0.95                  |
| Isomenthone | 1.31      | 2.5                  | 0.98                  | 1.91     | 4.54                 | 0.93                  | 0.73     | 1.55                 | 0.96                  | 1.88             | 7.35                 | 0.98                  |
| Menthone    | 1.27      | 3.24                 | 0.99                  | 1.84     | 5.77                 | 0.93                  | 0.4      | 2.08                 | 0.95                  | 2.2              | 10.86                | 0.94                  |

*R*<sup>2</sup> = correlation coefficient.


(14). The values for the Freundlich and Langmuir constants are given in Tables 3 and 4. The values the Freundlich isotherm exponents show that the INDION 1014 MN-2 has the best adsorption capacity for all the solutes. The capacity decreased in the order of decreased adsorbent surface area; i.e., INDION 1014 MN-2 > Amberlite XAD-4 > Amberlite XAD-2 > Amberlite XAD-7. Although the surface area of Amberlite XAD-7 is greater than that of Amberlite XAD-2 the adsorption capacity is less for Amberlite XAD-7 because of its intermediate surface polarity. The values of the equilibrium adsorption constants for the Langmuir isotherm were also the highest for INDION 1014 MN-2 for all the solutes, indicating that this compound has the best adsorption capacity. The order of adsorbent capacity

**Table 4.** Parameters for Langmuir Isotherm (Single Solute Adsorption)

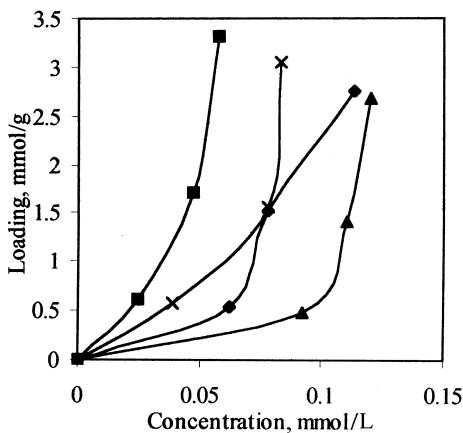
| Solute      | Adsorbent |           |                       |          |           |                       |          |           |                       |                  |           |                       |
|-------------|-----------|-----------|-----------------------|----------|-----------|-----------------------|----------|-----------|-----------------------|------------------|-----------|-----------------------|
|             | XAD-2     |           |                       | XAD-4    |           |                       | XAD-7    |           |                       | INDION 1014 MN-2 |           |                       |
|             | <i>K</i>  | <i>X*</i> | <i>R</i> <sup>2</sup> | <i>K</i> | <i>X*</i> | <i>R</i> <sup>2</sup> | <i>K</i> | <i>X*</i> | <i>R</i> <sup>2</sup> | <i>K</i>         | <i>X*</i> | <i>R</i> <sup>2</sup> |
| Geraniol    | 1.85      | 1.77      | 0.97                  | 5.67     | 2.58      | 0.99                  | 0.38     | 1.36      | 0.99                  | 10.34            | 3.14      | 0.98                  |
| Nerol       | 0.41      | 4.6       | 0.96                  | 2.41     | 2.76      | 0.96                  | 0.28     | 2.17      | 0.8                   | 36.01            | 3.12      | 0.99                  |
| Citronellol | 1.75      | 4.13      | 0.96                  | 0.61     | 10.34     | 0.96                  | —        | —         | —                     | 2.2              | 11.49     | 0.98                  |
| Linalool    | 0.73      | 4.29      | 0.93                  | 4.56     | 3.31      | 0.93                  | —        | —         | —                     | 45               | 3.13      | 0.91                  |
| Isomenthone | 0.78      | 5.62      | 0.97                  | 9.24     | 3.49      | 0.93                  | —        | —         | —                     | 15.37            | 4.14      | 0.96                  |
| Menthone    | 0.87      | 6.52      | 0.98                  | 11.08    | 3.77      | 0.94                  | —        | —         | —                     | 26               | 6.75      | 0.93                  |

*R*<sup>2</sup> = correlation coefficient.





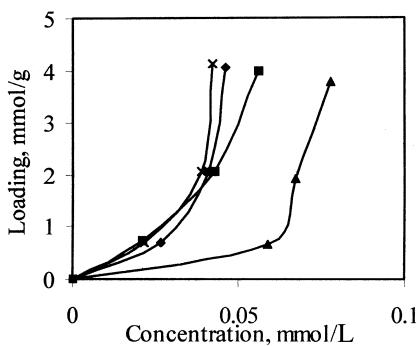
**Figure 3.** Single-solute adsorption isotherms (surface concentration versus concentration) for geraniol on polystyrene-divinylbenzene adsorbents at 25°C.  $\blacklozenge$  = Amberlite XAD-2;  $\blacksquare$  = Amberlite XAD-4;  $\times$  = INDION 1014 MN-2.


was as follows: INDION 1014 MN-2 > Amberlite XAD-4 > Amberlite XAD-2 > Amberlite XAD-7.

The single-solute adsorption isotherms were also plotted on the basis of surface concentration ( $\text{mmol/m}^2$ ) versus concentration of solute in the aqueous phase (7,16). The plots for 2 solutes, geraniol and isomenthone, are shown in Figs. 3 and 4, respectively, for the polystyrene-divinylbenzene adsorbents INDION 1014 MN-2, Amberlite XAD-4, and Amberlite XAD-2. According to the plots a good correlation exists between surface and solute concentrations, and data for all the adsorbents can be represented by a single line when plotted in terms of surface concentration. Some scatter is seen with regard to ketone plots but a trend of correlation with surface area is evident (Fig. 4). These plots indicate that the adsorption capacity is related to the adsorbent surface area.



**Figure 4.** Single-solute adsorption isotherms (surface concentration versus concentration) for isomenthone on polystyrene-divinylbenzene adsorbents at 25°C.  $\blacklozenge$  = Amberlite XAD-2;  $\blacksquare$  = Amberlite XAD-4;  $\times$  = INDION 1014 MN-2.






**Figure 5.** Multisolute adsorption isotherms (loading versus concentration) for geraniol on polymeric adsorbents at 25°C. ♦ = Amberlite XAD-2; ■ = Amberlite XAD-4; ▲ = Amberlite XAD-7; × = INDION 1014 MN-2.

### Multisolute Adsorption

The sorption isotherms of multisolutes were totally different from single solute adsorption isotherms for all the adsorbents. The multisolute isotherms were of the Type III and unfavorable (14). The isotherms for multisolute adsorption of geraniol and isomenthone are shown in Figs. 5 and 6. An attempt was made to fit

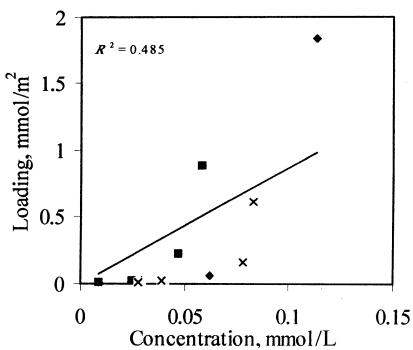


**Figure 6.** Multisolute adsorption isotherms (loading versus concentration) for isomenthone on polymeric adsorbents at 25°C. ♦ = Amberlite XAD-2; ■ = Amberlite XAD-4; ▲ = Amberlite XAD-7; × = INDION 1014 MN-2.



**Table 5.** Experimental and Calculated Loading Values for Citronellol onto Polystyrene-Divinylbenzene Adsorbents (Multisolute Adsorption)

| XAD-2        |            | XAD-4        |            | INDION 1014 MN-2 |            |
|--------------|------------|--------------|------------|------------------|------------|
| Experimental | Calculated | Experimental | Calculated | Experimental     | Calculated |
| 4.8          | 0.71       | 5.46         | 0.19       | 4.79             | 0.52       |
| 2.51         | 0.67       | 2.82         | 0.18       | 2.53             | 0.49       |
| 0.91         | 0.48       | 1.01         | 0.11       | 0.95             | 0.43       |
| 0.58         | 0.33       | 0.61         | 0.11       | 0.53             | 0.44       |

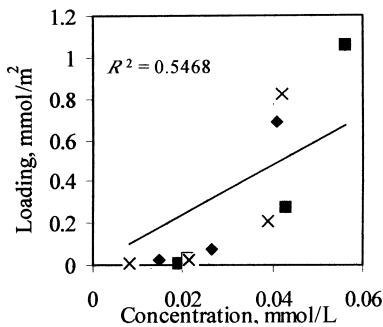

Loading values were calculated through the use of the multisolute Langmuir equation (14).

the multisolute adsorption data to the multisolute Langmuir isotherm (14). The multisolute Langmuir equation yielded poor correlation with the data. The loading values obtained experimentally and by the multisolute Langmuir equation for citronellol are shown in Table 5. The experimental values were consistently higher than the predicted values. This difference can be explained on the basis of interaction between adsorbed solutes. All the solutes in the mixture have functional groups capable of hydrogen bonding (Table 1). Thus, an adsorbed solute can hydrogen bond with another solute in the bulk liquid and hold it. Although the hydrogen-bonded solute is not directly attached to the adsorption surface, it is evidently removed from the bulk liquid and is counted as adsorbed, increasing the experimental values of amount adsorbed. The overall value of adsorbed concentration of any solute from the mixture was always lower than that for the single-solute experiment. This result is likely due to competitive adsorption and also to low solute concentrations in the mixture. A surface site occupied by one solute is not available to other solutes. Thus, the overall surface availability for any given solute is reduced in the case of adsorption from a mixture. The extent of adsorption is approximately proportional to the surface area available. The positive effect of hydrogen bonding is still not sufficient to raise the amount adsorbed to the level of single solute adsorption. Thus, the unavailable area (competitive adsorption) has a dominant effect.

Therefore, in the case of multisolute adsorption, the extent of adsorption decreases. All the isotherms for multisolute adsorption are of Type III and unfavorable.

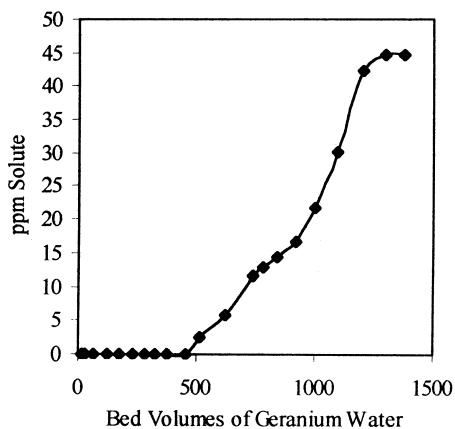
The isotherms of surface concentration versus concentration of solute in the aqueous phase in multisolute adsorption cases did not give a favorable fit to the linear model, indicating that the adsorption process was totally different in the mixture of solutes due to competitive adsorption. The plots for surface concentration are shown in Figs. 7 and 8 for geraniol and isomenthone.



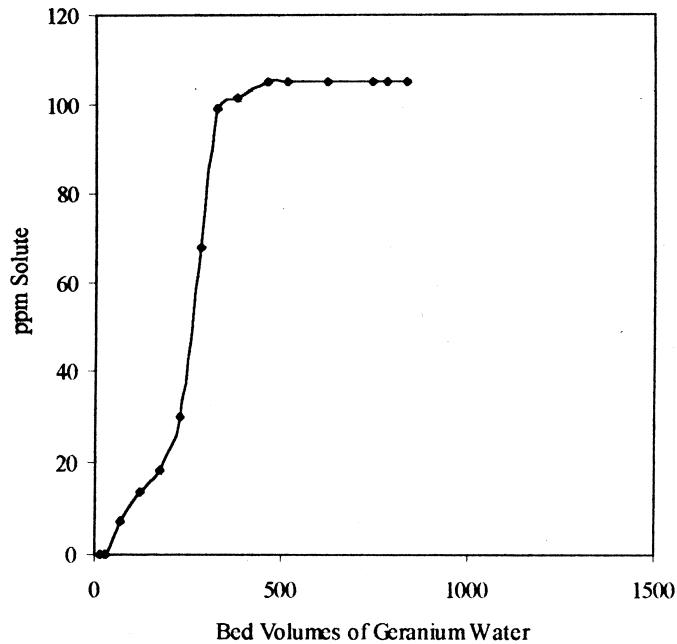



**Figure 7.** Multisolute adsorption isotherms (surface concentration versus solute concentration) for geraniol on polystyrene-divinylbenzene adsorbents at 25°C.  $\blacklozenge$  = Amberlite XAD-2;  $\blacksquare$  = Amberlite XAD-4;  $\times$  = INDION 1014 MN-2.

## COLUMN EXHAUSTION STUDIES


### Breakthrough

The results of the multisolute breakthrough studies are shown for geraniol and isomenthone in Figs. 9 and 10. The plots show a smooth S-shaped breakthrough curve for both the solutes. The capacities at breakpoint and saturation point are given in the Table 6. Normally, fixed-bed adsorption is used in at least a 2 bed in series configuration with a third regeneration column. In such a mode, the first column can be used to exhaustion because the second column is still fresh and capable of trapping the solute leaking from the first column. The column exhaus-

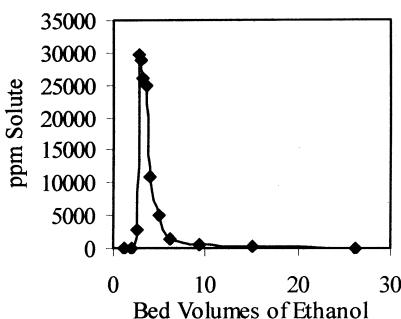



**Figure 8.** Multisolute adsorption isotherms (surface concentration versus concentration) for isomenthone on polystyrene-divinylbenzene adsorbents at 25°C.  $\blacklozenge$  = Amberlite XAD-2;  $\blacksquare$  = Amberlite XAD-4;  $\times$  = INDION 1014 MN-2.

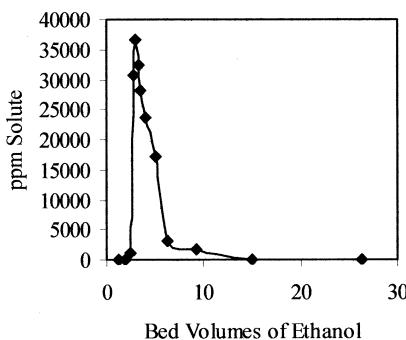




**Figure 9.** Breakthrough curve for geraniol adsorption on INDION 1014 MN-2 at 25°C; concentration = 60 ppm; mass of adsorbent = 10.5 g.




**Figure 10.** Breakthrough curve for isomenthone adsorption on INDION 1014 MN-2 at 25°C; concentration = 70 ppm; mass of adsorbent = 10.5 g.




**Table 6.** Capacity at Break Point and Saturation Point for Adsorption

| Solute      | Capacity at Break Point<br>(g/g of resin) | Capacity at Saturation Point<br>(g/g of resin) |
|-------------|-------------------------------------------|------------------------------------------------|
| Geraniol    | 0.022                                     | 0.040                                          |
| Nerol       | 0.014                                     | 0.019                                          |
| Citronellol | 0.024                                     | 0.054                                          |
| Linalool    | 0.0007                                    | 0.005                                          |
| Isomenthone | 0.006                                     | 0.024                                          |
| Menthone    | 0.003                                     | 0.016                                          |



**Figure 11.** Regeneration curve for geraniol on INDION 1014 MN-2 at 25°C.



**Figure 12.** Regeneration curve for isomenthone on INDION 1014 MN-2 at 25°C.



**Table 7.** Values of Initial Load, Rest Load, and Mass of Adsorbent Used for Desorption

| Solute      | Initial Load, g | Rest Load, g | Mass of Adsorbent, g |
|-------------|-----------------|--------------|----------------------|
| Geraniol    | 0.45            | 0.0          | 11.20                |
| Nerol       | 0.21            | 0.0          | 11.20                |
| Citronellol | 0.61            | 0.0          | 11.20                |
| Linalool    | 0.05            | 0.0          | 11.20                |
| Isomenthone | 0.27            | 0.0          | 11.20                |
| Menthone    | 0.17            | 0.0          | 11.20                |

tion study was carried out for only one polymeric adsorbent (INDION 1014 MN-2) because the supply of the geranium condensate water was limited. The column exhaustion studies used 11.2 g of adsorbent.

## REGENERATION

The regeneration plots for geraniol and isomenthone are shown in Figs. 11 and 12. The complete regeneration of the exhausted bed was possible through the use of 6–7 bed volumes of ethanol. The initial load, rest load, and mass of adsorbent used are given in the Table 7. The compound concentrations in the regeneration samples were relatively high. Thus, for citronellol, the original water concentration was 100 ppm whereas the regeneration sample showed a concentration of  $9.6 \times 10^4$  ppm. This result indicates that the adsorbents are separating the organic compounds from water and concentrating them simultaneously. The extract was evaporated and the oil recovered. A material balance calculation indicated that the recovery of the components was in excess of 95%. The recovered oil had the typical pleasant geranium aroma.

## CONCLUSIONS

Characterization of the geranium condensate water was completed. The polymeric adsorbent INDION 1014 MN-2 had greater adsorption capacity than the other samples in the single solute experiments. The single solute adsorption was totally dependent on the surface area of the adsorbent. However, in cases of multisolute system, competitive adsorption affected the experimental outcomes. We present evidence that increased adsorption from mixtures is due to hydrogen bonding of the solutes. The GC-MS results of the regeneration samples detected 3 important perfumery/flavor compounds, rose oxide, menthol, and  $\alpha$ -terpineol



that could not be detected in the condensate water due to their very low concentrations. The recovery of the compounds was also high (95%) indicating the feasibility of an adsorptive recovery process for these valuable solutes.

### NOMENCLATURE

|       |                                                       |
|-------|-------------------------------------------------------|
| $C_e$ | equilibrium concentration of solute (mmol/L) or (ppm) |
| $C_o$ | initial concentration of solute (mmol/L) or (ppm)     |
| $K$   | Langmuir equilibrium adsorption constant (L/mmol)     |
| $m$   | mass of the adsorbent (g)                             |
| $m_F$ | Freundlich constant                                   |
| $n$   | Freundlich constant                                   |
| $V$   | volume of solution (mL) or (L)                        |
| $c$   | loading of the adsorbent (mmol/g)                     |
| $c^*$ | maximum loading of the adsorbent (mmol/g)             |

### ACKNOWLEDGMENT

The authors wish to acknowledge Mr. Ramakant Harlalka of Nishant Aromas India Ltd for supplying the valuable pure samples of solutes and Mr. Serajuddin of Ajmal and Sons for the geranium condensate water. Also, they wish to thank Mr. Vijay Joshi of Vaishali Aromatics India Ltd for the GC-MS analysis of the samples.

### REFERENCES

1. Guenther, E. *The Essential Oils*, 1st Ed.; Robert E. Krieger Publishing Co: Florida, 1952; Vols. I and IV.
2. Machale, K.W.; Niranjan, K.; Pangarkar, V.G. Recovery of Dissolved Essential Oils from Condensate Waters of Basil and *Mentha arvensis* Distillation. *J. Chem. Tech. Biotechnol.* **1997**, *69*, 362–366.
3. Bohra, P.M.; Vaze, A.S.; Pangarkar, V.G.; Taskar, A. Adsorptive Recovery of Water Soluble Essential Oil Components. *J. Chem. Tech. Biotechnol.* **1994**, *60*, 97–102.
4. Fleisher, A. Water-Soluble Fractions of the Essential Oils. *Perfumer and Flavorist* **1991**, *16*, 37–41.
5. Jogdeo, D.A.; Niranjan, K.; Pangarkar, V.G. Recovery of Allyl Isothiocyanate from Steam Distillation Condensate Using Adsorption. *J. Chem. Tech. Biotechnol.* **2000**, *75*, 673–680.



6. Rexwinkel, G.; Heesink, B.B.M.; van Swaaij, W.P.M. Adsorption of Halogenated Hydrocarbons from Aqueous Solutions by Wetted and Nonwetted Hydrophobic and Hydrophilic Sorbents: Equilibria. *J. Chem. Eng. Data* **1999**, *44*, 1139–1145.
7. Browne, T.E.; Cohen, Y. Aqueous-Phase Adsorption of Trichloroethene and Chloroform onto Polymeric Resins and Activated Carbon. *Ind. Eng. Chem. Res.* **1990**, *29*, 1338–1345.
8. Deshmukh, S.W.; Pangarkar, V.G. Recovery of Organic Chemicals from Effluents by Adsorption over Polymeric Adsorbents. *Indian Chemical Engr.* **1984**, *XXVI* (3), 35–38.
9. Crook, E.H.; McDonnell, R.P.; McNulty, J.T. Removal and Recovery of Phenols from Industrials Waste Effluents with Amberlite XAD Polymeric Adsorbents. *Ind. Eng. Chem. Prod. Res. Dev.* **1975**, *14* (2), 113–118.
10. Grant, T.M.; King, C.J. Mechanism of Irreversible Adsorption of Phenolic Compounds by Activated Carbon. *Ind. Eng. Chem. Res.* **1990**, *29*, 264–271.
11. Cairo, P.R.; Coyle, J.T.; Davis, J.T.; Neukrug, H.M.; Suffet, I.H.; Wickland, A. Evaluating Regenerated Activated Carbon Through Laboratory and Pilot-Column Studies. *J. Am. Water Works Assoc.* **1982**, *74* (2), 94–102.
12. Bauer, K.; Garbe, D.; Surburg, H. *Common Fragrance and Flavor Materials*, 2nd Ed.; VCH Publishers: New York, 1990.
13. Gusler, G.M.; Browne, T.E.; Cohen, Y. Sorption of Organics from Aqueous Solution onto Polymeric Resins. *Ind. Eng. Chem. Res.* **1993**, *32*, 2727–2735.
14. Ruthven, D.M. *Principles of Adsorption and Adsorption Processes*, 3rd Ed.; Wiley-Interscience Publishing: New York, 1984.
15. Treybal, R.E. *Mass Transfer Operations*, 3rd Ed.; McGraw-Hill Book Co: New York, 1980.
16. Cornel, P.; Sontheimer, H. Sorption of Dissolved Organics from Aqueous Solution by Polystyrene Resins—I. Resin Characterization and Sorption Equilibrium. *Chem. Eng. Sci.* **1986**, *41* (7), 1791–1800.
17. Arctander, S. *Perfume and Flavor Chemicals (Aroma Chemicals)*, 1st Ed.; Author: New Jersey, 1969.
18. Rohm and Haas, Inc. *Fluid Process Chemicals: Amberlite XAD-2, Amberlite XAD-4, and Amberlite XAD-7*. Technical Bulletin; Author: Philadelphia, Pa, 2000.
19. Ion Exchange Ltd. *Physical, Chemical, and Operating Characteristics: INDION 1014 MN-2*; Author: India, 2000.

Received August 2000

Revised February 2001



## **Request Permission or Order Reprints Instantly!**

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

**Order now!**

Reprints of this article can also be ordered at  
<http://www.dekker.com/servlet/product/DOI/101081SS100108353>